Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686471

RESUMO

The behavior and migration of human mesenchymal stromal cells (hMSCs) are focal points of research in the biomedical field. One of the major aspects is potential therapy using hMCS, but at present, the safety of their use is still controversial owing to limited data on changes that occur with hMSCs in the long term. Fluorescent photoconvertible proteins are intensively used today as "gold standard" to mark the individual cells and study single-cell interactions, migration processes, and the formation of pure lines. A crucial disadvantage of this method is the need for genetic modification of the primary culture, which casts doubt on the possibility of exploring the resulting clones in personalized medicine. Here we present a new approach for labeling and tracking hMSCs without genetic modification based on the application of cell-internalizable photoconvertible polyelectrolyte microcapsules (size: 2.6 ± 0.5 µm). These capsules were loaded with rhodamine B, and after thermal treatment, exhibited fluorescent photoconversion properties. Photoconvertible capsules demonstrated low cytotoxicity, did not affect the immunophenotype of the hMSCs, and maintained a high level of fluorescent signal for at least seven days. The developed approach was tested for cell tracking for four days and made it possible to trace the destiny of daughter cells without the need for additional labeling.


Assuntos
Células-Tronco Mesenquimais , Humanos , Cápsulas , Comunicação Celular , Rastreamento de Células , Células Clonais , Corantes
2.
Colloids Surf B Biointerfaces ; 199: 111548, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33421925

RESUMO

Magnetic hyperthermia (MH) is a perspective tool to treat the tumor while the magnetic material is delivered. The key problems in MH development is to ensure an effective local heating within cancer cell without overheating other cells. In order to do that one has to reach substantial local accumulation of magnetic nanoparticles (MNPs) and/or magnetically sensitive objects with advanced heat properties. Absorbing heat energy for destroying tumor cells can be generated only if there is sufficient amount of locally placed MNPs. In this work, we propose polyelectrolyte microcapsules modified with iron oxide nanoparticles as an approach to tie magnetic materials in high concentration locally. These microcapsules (about 3 microns in diameter) can be readily internalized by various cells. The human fibroblasts uptake of the microcapsules and cytotoxic effect upon the influence of alternating magnetic field (AMF) while magnetic capsules are inside the cells is under study in this work. The cytotoxicity of the magnetic microcapsules was compared with the cytotoxicity of the MNPs while free in the solution to evaluate the effect of bounding MNPs. A cytotoxic effect on cells was found in the case of preliminary incubation of fibroblasts with capsules while the AMF is applied. In the case of MNPs in an equivalent dose per mass of magnetic material, there was no cytotoxic effect noticed after the treatment with the field. It is noteworthy that during the treatment of cells with the AMF, the increase in temperature of the incubation medium was not registered. The morphological changes on fibroblasts were consistent with the data of the viability assessment. Thus, the synthesized capsules are shown as a means for local enhancement of magnetic hyperthermia in the treatment of tumor diseases.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Cápsulas , Humanos , Campos Magnéticos , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...